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Abstract

It is investigated the possibility of controlling the electric �ow through a ferromagnet-

superconductor junction by spin polarization ("�eld-induced superconducting transistor"-

FIST e�ect). The ferromagnetic and superconducting properties are brie�y reviewed, and the

ferromagnet-superconductor junction is analyzed. The formation of a perfect contact at such

junctions is characterized, and reasons are given that such a contact may support a ballistic

regime of transport for the ferromagnetic sample, while the superconducting sample being

subject to a di�usive transport. For such a ballistic regime it is shown that the conductivity of

the junction increases monotonically with increasing magnetization, including both positive

or negative jumps, giving thus the possibility of controlling the �ow through magnetization.

1 Introduction

We all want the modern electronic devices be as small as possible in size, while supporting at the
same time voltages and electric �ows comparable with those at the macroscopic scale. Unfortu-
nately, this trend towards miniaturization raises a problem, because usual conductors diminish
the electric resistance while reducing the size. This is why we prefer semiconductors and potential
barriers like metal oxides at metal-metal or metal-semiconductor junctions, or inversion layers at
semiconducting junctions, for such miniatural electronic devices. Superconductors exhibit nat-
ural potential barriers at such junctions, hence the interest in investigating their properties in
miniatural electronic devices.

The thermal and electric transport performed by the electron quasi-particles at a conductor-
superconductor junction exhibits certain peculiarities, in comparison with the transport between
two normal conductors, as a consequence of the presence of the superconducting gap in the quasi-
particle spectrum. The quasi-particles are re�ected by the superconducting gap, such that a tem-
perature drop occurs at the junction, as well a corresponding counter-�ow of heat and charge. This
is known as the Andreev re�ection, though its resemblance with Seebeck and Peltier e�ects is strik-
ing; a similar behaviour is present for an opposite thermal �ow, passing through a superconductor-
conductor junction. The passage of an electric �ow through a conductor-superconductor junction
is accompanied by a voltage drop at the junction and a re�ected electric �ow propagating backward
into the conductor; an opposite electric �ow, passing from the superconductor into the conductor,
implies a similar voltage drop.

The passage of the electron quasi-particles in such thermal or electric �ows into, or from, a super-
conductor is thought to be a�ected by the superconducting correlations between the quasi-particles
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spins. Indeed, usually, a superconductor favours the antiparallel spins, hence the idea that the
corresponding jumps into temperature or voltage, as well as the thermal or electric �ows them-
selves, might be controlled, in principle, by a spin polarization. Such a spin polarization occurs
naturally into a ferromagnet, hence the investigation of the Andreev re�ection at a ferromagnet-
superconductor junction; varying the magnetization, by a temperature change slightly below the
magnetic critical temperature, and much below the superconducting critical temperature, one
might control the �ows into, or from, a superconductor, much the same as in a transistor, the
magnetization playing the role of a gate voltage; this would be a "�eld-induced superconducting
transistor (FIST)", the transistor e�ect being induced by the spin-polarization �eld; all the same,
it would be a new device in the spintronics �eld. It is shown herein that the dependence of the
�ow on the magnetization resides in the conduction of the ferromagnetic sample, the control be-
ing e�ective in the ballistic regime of transport for the ferromagnetic sample and the di�usive
transport regime for the superconducting sample.

One of the major issues in transport phenomena at a junction is the role of the interface. Usually,
a more or less extended contact develops at an interface, due to the mutual atomic di�usion of
the solids into each other; for an extended contact a "third solid" appears then, in-between the
two partners of the junction, with its own contribution to the transport coe�cients; however, new
junctions can be de�ned between the original solids and the "third" one, which, now, are almost
perfect contacts; the role of such an ideal, perfect contact is therefore essential in describing a
junction, it giving rise to an ideal Kapitza resistance; except for this additional, small contribution,
the transport is carried through such a junction as for almost equal Fermi levels. In addition,
certain matching conditions must be ful�lled at the junction, which imposes certain limitations
upon a practical realization of the FIST. The matching conditions are possible for an extended
contact, due to the slow spatial variations along it; however, an extended contact may diminish the
e�ciency of the FIST e�ect. The presence of an additional potential barrier at the ferromagnet-
superconductor is not excluded for the FIST e�ect, the matching conditions being also ful�lled in
this case, though it contributes its own resistance.

2 Ferromagnet

We adopt a Fermi liquid picture for the charge carriers in the ferromagnet;1 the charge carriers
are assumed to be electrons, with an isotropic single-particle energy spectrum ε(k) labelled by the
wavevector k in the normal (non-ferromagnetic) state; their number is given by N = V k3

F/3π
2,

where kF denotes the Fermi wavevector and V is the volume of the sample; the quasi-particles
have a Fermi velocity

vn = ∂ε/~∂k |k=kF
= ~kF/m

∗ , (1)

where m∗ is their e�ective mass (and ~ is Planck's constant); the Fermi level is de�ned by
µn = ε(kF ) (which de�nes the Fermi surface by �xing µn from the number of particles). The
function ε(k) can be derived, within certain limits, from the quasi-classical description of matter
aggregation,2 including the so-called quantal corrections which give discrete energy levels or energy
bands from an original quasi-free-particle picture for the electrons; in general, the label k may
not be a wavevector, but we focus here mainly on conducting solids where k is a wavevector (or
so-called a pseudo-wavevector, for crystalline solids); however, the knowledge of the function ε(k)
is not very useful (leaving aside that its knowledge has also an inherent uncertainty), except for

1M. Apostol, The Electron Liquid, apoma, MB (2000) (a).
2L. C. Cune and M. Apostol, Metallic Binding, apoma, MB (2000).
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its derivative at the Fermi surface which is related to the quasi-particle velocity according to (1);
it is also worth noting that the second-order term in the k-expansion of ε(k) at the Fermi surface
is uncertain due to the interaction e�ects, and it controls in fact the quasi-particles lifetime.

Below a critical temperature Tm the ferromagnetic state begins to set up; it is characterized by a
temperature-dependent gap ∆m in the single-particle energy spectrum, which reads now

ε1(k) = −∆m/2 + ε(k) ,

ε2(k) = ∆m/2 + ε(k) ,
(2)

as corresponding to spin up (label 1) and spin down (label 2), respectively. Such a ferromagnetic
energy spectrum can be derived within a mean-�eld theory for exchange interaction of the Hartree-
Fock quasi-particles. The number of electrons is given now by

N = V k3
F1/6π

2 + V k3
F2/6π

2 , (3)

and the magnetization reads

M = µB(V k3
F1/6π

2 − V k3
F2/6π

2) , (4)

where µB = e~/2mc is Bohr's magneton (with usual notations −e is the electron charge, m is
the electron mass and c denotes the velocity of light).3 It is convenient to introduce a reduced
magnetization de�ned as m = M/µBN , which leads to

kF1 = kF (1 +m)1/3 ,

kF2 = kF (1−m)1/3

(5)

for the two Fermi wavevectors in (3) and (4); equations (3) and (4) can also be recast as

N = (V k3
F/6π

2)[(1 +m) + (1−m)] ,

M = µB(V k3
F/6π

2)[(1 +m)− (1−m)] ;
(6)

obviously, the relative magnetization varies between 0 and 1, 0 < m < 1. In the ferromagnetic
state there are two types of quasi-particles, corresponding to spin up and spin down, moving with
velocities

vF1,2 = v1,2 = ∂ε1,2/~∂k
∣∣
k=kF1,2

= ~kF1,2/m
∗ = ,

= vn(1±m)1/3 ;
(7)

this is the main point through which the dependence on magnetization is introduced in the ther-
mal or electric �ows through the ferromagnet-superconductor junction,4 together with the m-
dependence of the Fermi wavevectors kF1,2 given by (5). The Fermi level of the ferromagnetic
state is given by

µm = −∆m/2 + ε(kF1) = ∆m/2 + ε(kF2) ; (8)

hence,
∆m = ε(kF (1 +m)1/3)− ε(kF (1−m)1/3) ; (9)

3It is assumed that the gyromagnetic factor is slightly renormalized, as usually, so that we may use the magnetic
momentum of the free electrons.

4Higher-order corrections to the e�ective mass as due to the interaction e�ects on the two ferromagnetic branches
of energy levels may be neglected.
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this equation determines the temperature dependence of the magnetization m. Indeed, the ferro-
magnetic gap has a typical dependence ∆m = ∆m0(1 − T/Tm)1/2 on temperature T close to Tm;
for lower temperatures its temperature slope is vanishing, as for a typical mean-�eld theory. Since
kF1,2 have a slow dependence on magnetization (except for kF2 = kF (1 − m)1/3 for m ∼ 1), we
may use the expansion

∆m =
2

3
~vnkFm (10)

for equation (9); similarly, the Fermi level reads

µm = −∆m/2 + µn +
1

3
~vnkFm+O(m2) = µn +O(m2) , (11)

whence one can see that it does not change appreciably in the ferromagnetic state. These m-
expansions can be used for small values of m; usually, the ferromagnetic gap ∆m is smaller
than (2/3)~vnkF , so that the magnetization acquires indeed small values; however, if ∆m exceeds
(2/3)~vnkF below a certain (low) temperature then the magnetization stays at unity for vanishing
temperatures; there, the expansions (10) and (11) are not valid anymore. It is also worth noting
that the Fermi level µn has a well-known T 2-correction, which contributes to µm together with the
temperature dependence of the magnetization; however, both these temperature contributions are
small and they may be neglected. Typically, the magnetization m acquires small values for large
values of the product ~vnkF (which may be taken as a measure of the conduction bandwidth) and,
viceversa, it acquires higher values for small values of ~vnkF , so that the ferromagnetic gap ∆m is
relatively small in comparison with the Fermi energy (without quantal corrections); this behaviour
is consistent with the exchange character of the magnetic interactions, which a�ects mainly the
single-electron states close to the Fermi surface, within a certain, well-determined range.

3 Superconductor

Let ck be the destruction operator of a quasi-particle state in a normal conductor; it obeys Heisen-
berg's equation

i~∂ck/∂t = ε(k)ck = [µn + ~vn(k− kF )]ck , (12)

or, introducing the �eld operator ψ(r) = (1/
√
V )

∑
k cke

ikr for k close to kF ,

i~∂ψ/∂t = (µn − ~vnkF − i~vn∂/∂r)ψ ; (13)

it is worth recalling here that the quasi-particles with the energy levels ε(k) are not independent
particles, except for the vicinity of the Fermi surface where their lifetime is in�nite. In addition
they are wavepackets of plane waves with wavevectors close to each k-wavevector.

Various other elementary excitations can couple to electron quasi-particles; the e�ect of such a
coupling can be written as an electron-electron e�ective (residual) interaction

He−e =
1

2

∫
drdr′ · g(r− r′)ψ+

α (r)ψ+
β (r′)ψβ(r′)ψα(r) , (14)

where α,β are spin labels and g(r − r′) is a potential (here chosen as spin-independent for sim-
plicity); equation (13) reads now

i~∂ψα/∂t = (µn − ~vnkF − i~vn∂/∂r)ψα+

+
∫
dr′ · g(r− r′)ψ+

β (r′)ψβ(r′)ψα(r) ;
(15)
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such an interaction may lead to superconductivity, by a macroscopic occupation < ψα(r)ψβ(r) >6=
0 of the pair states.5 The pair wavefunction < ψα(r)ψβ(r) > breaks the gauge symmetry ψ → ψeiθ,
as for a phase-coherent o�-diagonal long-range order; actually, the pair wavefunction possesses a
crystalline symmetry too, as well as spin-singlet or -triplet, and time reversal symmetries; for a
spin triplet the orbital symmetry is odd, while for a spin singlet it is even, according to the parity of
the state under space inversion; the s-wave and d-wave symmetries are included among the latter.
Here we assume a δ-type interaction g(r−r′) = gδ(r−r′), which makes the pair wavefunction a spin
singlet < ψ−α(r)ψα(r) >; we de�ne Fα = g < ψ−α(r)ψα(r) >. According to its de�nition F−α =
−Fα, while F ∗

−α = Fα by time reversal symmetry; it follows that we may de�ne the superconducting
gap parameter ∆α = ∆∗

α = −∆−α (> 0) through Fα = i∆α. In addition, we include the basic time-
dependence ψα ∼ e−iµnt/~ in equation (15), such as the superconducting gap be time-independent;
equation (15) describes then the (�rst-order) perturbations to the superconducting state, i.e. its
elementary excitations; this amounts to subtracting µnN from the hamiltonian in writing down
the equations of motion, as the number N of the elementary excitations is not conserved; equation
(15) becomes then

i~∂ψα/∂t = (−~vnkF − i~vn∂/∂r)ψα + i∆α(r)ψ+
−α(r) ; (16)

in addition we assume a constant ∆α = ∆α(r) as for a s-wave pair state,6 which is typical for an
electron-phonon mechanism of superconductivity; equation (16) leads to

i~∂ckα/∂t = ~vn(k − kF )ckα + i∆αc
+
−k−α ,

−i~∂c+−k−α/∂t = ~vn(k − kF )c+−k−α + i∆αckα

(17)

for k along vn, which are solved for the well-known superconducting spectrum

ε±(k) = µn ±
√

∆2
α + ~2v2

n(k − kF )2 , (18)

with (the original) ckα ∼ e−i(µn+~ω)t/~, c+−k−α ∼ ei(µn−~ω)t/~, and ~ω = ±
√

∆2
α + ~2v2

n(k − kF )2; the
lower branch joints smoothly the rest of the original energy spectrum, so that the superconducting
Fermi level is given by7

µs = µn −∆α . (19)

It is convenient to measure the wavevectors with respect to the Fermi wavevector, i.e. ε±(k) =
µn ±

√
∆2

α + ~2v2
nk

2, so that the solutions to equation (17) read

ckα = ukbkα + ivkb
+
−k−α ,

c−k−α = ukb−k−α − ivkb
+
kα ,

(20)

where uk = |cos θk| , vk = |sin θk| , tan θk = −(Ek − ~vnk)/∆α , Ek = ~ω =
√

∆2
α + ~2v2

nk
2, or

u2
k = 1

2
(1 + ~vnk/Ek) ,

v2
k = 1

2
(1− ~vnk/Ek) ,

(21)

5L. P. Gorkov, ZhETF 34 735 (1958) (Sov. Phys.-JETP 7 505 (1958)).
6The high-temperature superconducting cuprate oxides seem to possess a d-wave pairing, arising probably from

an electron-lattice interaction with antiferromagnetic �uctuations; see, for instance, C. C. Tsuei and J. R. Kirtley,
Revs. Mod. Phys. 72 969 (2000).

7It is worth noting that the formal chemical potential ∂E/∂N is µn; indeed, adding a pair to the ground-state
the energy increases by 2∆α with respect to the Fermi energy µs = µn −∆α, i.e. ∆α per particle (a bkα-quanta
of energy is ~ω); here one can see part of the pairs preserving their original fermion character, while by their
macroscopic occupation they resemble more an ensemble of bosons.
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for the energy branch ε(k) = µn + sgn(k)Ek, and ukvk = ∆α/2Ek. The self-consistency condition
∆α = −ig < ψ−α(r)ψα(r) >leads to the well-known equation

1 = −gk
2
F

2π2

∫
dk

tanh βEk

2Ek

; (22)

hence, one may see that interaction must be attractive, i.e. g < 0, in this case; one obtains the
well-known critical temperature

Tc ' ~vnkce
−1/Dg , (23)

where D = k2
F/2π

2~vn is the density of states (per spin) at the Fermi surface, kc is a wavevector
cuto�,8 and the sign of the interaction has been changed; similarly, one obtains the temperature
dependence of the gap ∆α = ∆α0(1− T/Tc)

1/2 for temperatures close to the critical temperature,
the gap ∆α0 being given by ∆α0 ' 2~vnkce

−1/Dg. We may neglect the temperature dependence of
the superconducting gap and Fermi level (19), assuming the temperature be su�ciently low for
superconductivity be well developed.

4 Ferromagnet-Superconductor Junction

According to the quasi-classical description of matter aggregation9 the cohesion of a solid is gov-
erned by a self-consistent potential ϕ(r); its simplest form is given by

ϕ(r) =
∑

i

z∗i
|r−Ri|

e−q|r−Ri| , (24)

where z∗i denote e�ective ionic charges (in atomic units), Ri are the ionic positions and q is a
screening wavevector; the screening wavevector is estimated as q ' 0.77z∗1/3 (in atomic units),
where z∗ = z∗i is the average e�ective charge; one may introduce an average inter-ionic separation
a, and the product qa is estimated as c = qa ' 2.73; the electron density n is related to the self-
consistent potential through 4πn = q2ϕ; the average potential as given by (24) is ϕ = 4πz∗/a3q2.
This quasi-classical description is re�ned in the next step by so-called quantal corrections, which
lead, among others, to a shift of the Fermi level toward negative values (at this level of approx-
imation the Fermi level is placed at zero energy, while the chemical potential of the electrons is
−ϕ).
Let us consider a semi-in�nite solid with a plane free surface at x = 0; the corresponding average
potential as given by (24) is

ϕ(x) = 4πz∗

a3q2 (1− 1
2
eqx) , x < 0 ,

ϕ(x) = 2πz∗

a3q2 e
−qx , x > 0 ;

(25)

one can see that there exists a change

δϕ(x) = −2πz∗

a3q2 e
qx , x < 0 ,

δϕ(x) = 2πz∗

a3q2 e
−qx , x > 0

(26)

8The scale energy ~vnkc is of the order of the Debye energy ~ωD for a phonon-electron superconducting inter-
action.

9L. C. Cune and M. Apostol, loc cit.
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in the self-consistent potential at the surface, in comparison with the potential in the bulk, so that
a corresponding change δn(x) = q2δϕ(x)/4π in the electron density appears at the free surface;
the electrons spill over the surface and give rise to a charge double layer; the surface is depleted
by z∗/2a3q electrons per unit area; the electric �eld arising from the sharp surface is compensated
by the dipole �eld of the surface charge redistribution. The energy (per unit area of the surface)
associated with this double layer can be estimated as

δE = −1
2

∫
dx · δϕδn = − q2

8π

∫
dx · (δϕ)2 =

= q2

4π

∫
dx · xδϕ(∂δϕ/∂x) = −

∫
dx · xδnE = − πz∗2

2a6q3 ,

(27)

and one can see that it originates in the dipole �eld of intensity E = −∂δϕ/∂x; it is a surface
energy. It is also worth noting that the surface double layer extends over distances of the order
of the atomic distances a (∼ 1/q), and the surface ions relax by δa ∼ 1/4q ∼ 0.1a, for the surface
energy given above. The surface energy (27) is a second-order contribution in the potential
(and electron density) change, and, consequently, it is comparable to the uncertainy in quasi-
particle energy; it contributes therefore to the surface-scattering lifetime of the quasi-particles.
Indeed, the surface energy (27) can also be written as δE = −πn2/2q3, where n = z∗/a3 is the
electron concentration, or δε = πn/2q3d an energy per electron, where d denotes the length of
the sample; it can be compared with the Fermi energy µ ∼ ϕ of the electron liquid, leading to
δε/µ = (1/8c2)(a/d), and a surface-scattering lifetime τs ∼ (~/µ)(d/a); this is Casimir's �nite-
size (boundary scattering) lifetime of the electron quasi-particles.10 Typically, for conductors, the
electron-electron uncertainty in electron energy is of the order of δε ∼ (T/µ)2µ (or (∆ε/µ)2µ),
while the electron-phonon uncertainty in electron energy can be represented as δε ' T/F , F =
(M/m)(~ωD/µ)2, whereM is the ionic mass and ωD is the Debye frequency.11 Except for very low
temperatures, or atomic-size samples, the boundary scattering lifetime is very long, and, therefore,
it contributes little to transport. It is also worth noting the work function of the solid

W = −ϕ(+∞) + ϕ(−∞) = −
∫
dx · ∂δϕ/∂x =

=
∫
dx · x(∂2δϕ/∂x2) = −4π

∫
dx · xδn =

= q2
∫
dx · xδϕ = 4πz∗/a3q2 = ϕ ,

(28)

as expected, where Poisson's equation ∂2δϕ/∂x2 = 4πδn = q2δϕ is employed. A similar expo-
nential decay at the surface is su�ered by the quantal corrections to the electron energy levels, in
particular by the energy band structure.

Let us consider now two distinct solids labelled by 1 and 2, respectively, with a plane interface at
x = 0; solid 1 extends from x = −∞ to x = 0 and solid 2 extends from x = 0 to x = +∞. The
Fermi energies, i.e. the extension in energy from the bottom of the energy bands to the top of
the Fermi seas (the top not necessarily placed at zero energy) are denoted by µ1,2; the bottom of
the energy bands are placed at −ϕ1,2. When put in contact the interface ions are separated by
a potential barrier of width ∼ a and height ∼ z∗ϕ, where a is an average inter-ionic separation
and z∗ϕ denotes an average potential energy; if the two solids are similar, i.e. the di�erence
∆z∗ in their e�ective charges is very small, they form up a perfect contact; otherwise, the ions
are perturbed by ∼ z∗∆ϕ ∼ z∗∆z∗e2/a, and tunnel through across the top of the barrier; the

10H. B. G. Casimir, Physica 5 495 (1938).
11M. Apostol, Transport Theory, apoma, MB (2001) (b).
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well-known transmission coe�cient

T 2 =
4k2κ2

(k2 + κ2)2 sinh2 aκ+ 4k2κ2
(29)

of a rectangular barrier, where κ2 � k2 = (2M/~2)z∗∆ϕ ∼ (2M/~2)z∗∆z∗e2/a, becomes T 2 =
4/(a2k2 + 4), and, since a2k2 ∼ (M/m)z∗∆z∗(a/aH), one gets

T 2 ' m

M

1

z∗∆z∗
aH

a
, (30)

where M is the ionic mass and aH = ~2/me2 is Bohr's radius. The distance covered by the ion
is12 Λc ∼ −a/ lnR, where R is the re�ection coe�cient, R2 = 1− T 2; one obtains

Λc ∼ a
M

m
z∗∆z∗(a/aH) ; (31)

this length Λc is a measure of the contact width, but the two solids are not at equilibrium, and
it is in fact a di�usion length of one solid into another (with a decreasing velocity); the di�usion
velocity

v = ~k/M ∼
√
m/M ·

√
z∗∆z∗(a/aH) · vF (32)

is much lower than the Fermi velocity vF of the electrons,13 but the di�usion takes a longer time,
so that the width of the contact is much larger than the lattice constant. Typical values for Λc

are of the order of 102 − 103

A , while the mean-free path of the electron quasi-particles, as given by Λ ∼ vF ~µ/T 2, for instance,
(for electron-electron interaction in conductors14 ) are of the order of 103 − 104

A at room temperature. One can see that Λc is shorter than Λ, and at low temperatures Λ may
increase appreciably.15 Over the contact width Λc the electron energy levels vary smoothly; for
instance, the self-consistent potential across the interface reads

ϕ(x) = ϕ1 + 1
2
∆ϕex/Λc , x < 0 ,

ϕ(x) = ϕ2 − 1
2
∆ϕe−x/Λc , x > 0 ,

(33)

and one can see that the relative work function −
∫
dx · (∂ϕ/∂x) = −∆ϕ = ϕ1−ϕ2 is the contact

potential between the two solids, as expected. For large contact widths, the interface brings its
own contribution (as a "third solid" in-between the junction of the two), for instance to transport
coe�cients.16

We assume a perfect interface between two conductors, and focus on the electron quasi-particles
transport; the di�erence ∆ϕ between the two chemical potentials is small in comparison with

12M. Apostol, J. Theor. Phys. 74 (2001) (c).
13It may be increased by external perturbations, like an electric �eld, for instance, or raising the temperature,

which also helps bringing the two solids in "atomic" contact.
14And similarly for electron-phonon interaction (M. Apostol, loc cit (b)).
15In classical semiconductors the contact width is much narrow, of the order of 10

A , as a consequence of the drastic reduction in the e�ective charges z∗(and their di�erences), while the mean-free
path of the charge carriers is longer (∼ 100
A ); see, for instance, M. Apostol, loc cit (b).

16It is worth noting in this connection that the contacts discussed here are those appearing naturally and freely
between two solids, and not contacts realized by a limited deposition or growth of an additional, external solid
in-between, like metal-oxide-metal, semi- or superconductor, where tunneling currents are measured through the
oxide potential barrier (see, for instance, I. Giaever, Revs. Mod. Phys. 46 245 (1974)).
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the cohesion scale ϕ, and placed at the bottom of the bands; the quantal corrections bring even
smaller contributions; it follows that the di�erence ∆µ between the two Fermi energies (i.e. the
extent in energy from the bottom of the bands to the Fermi surface) is small in comparison with
the Fermi energy µ, so that the quasi-particles have in fact a common Fermi level µ and a change
∆µ in energy on passing across the interface.17 It follows that the electron energy uncertainty
~/τ ∼ (δµ)2/µ (or ~/τ ∼ T 2/µ) su�ers a change ∆(~/τ) ∼ ((δµ)2/µ)(∆µ/µ)2 = (~/τ)(∆µ/µ)2,
and a similar change occurs for the electron-phonon uncertainty in the quasi-particle energy;
therefore, the quasi-particle lifetime τ su�ers a relative change according to

∆(1/τ)/(1/τ) = (∆µ/µ)2 (34)

on passing through the interface. All the transport coe�cients are a�ected by a similar relative
change due to the presence of the interface; in particular the electric conductivity σ undergoes a
decrease ∆σ/σ = −(∆µ/µ)2, and the electric resistivity ρ increases by ∆ρ/ρ = (∆µ/µ)2; this is
Kapitza's contact resistance;18 a relative voltage drop ∆U/U = (∆µ/µ)2 occurs at the interface.

The relative jump (∆µ/µ)2 at the interface a�ects all the transport properties of the quasi-
particles, in particular their lifetime τ and mean-free path Λ.19 The fraction τf = (∆µ/µ)2τ
is the �ip time of the quasi-particles on passing through the interface, and Λf = (∆µ/µ)2Λ is
the corresponding �ip path, or penetration length. Accordingly, at the ferromagnet-conductor
interface the quasi-particle spin �ips over the length Λf , so the magnetization is gradually de-
stroyed over the length Λf into the ferromagnet, and it penetrates similarly over a distance Λf

into the normal conductor (the di�erence in the two Fermi velocities in the magnetic state bears
no relevance in estimating the penetration length; a more suggestive measure of two competing �ip
lengths Λ1,2 is (Λ1Λ2)

1/2). At the superconductor-normal conductor interface the superconducting
gap extends up to Λf into the normal conductor, and is destroyed gradually over the same length
into the superconductor; the Fermi velocity in the superconductor is that corresponding to the
normal state of the superconductor, while the quasi-particle lifetime is formally a�ected by the
superconducting gap.20 The same description applies also to a conductor-insulator interface, by
noting that the insulating gap is a "quantal correction" in terms of the present approach, so the
insulating gap is destroyed over Λf length at the interface, and penetrates over a similar length
into the conductor.21It follows, according to the present description, that the charge carriers in
a (perfect contact) ferromagnet-superconductor junction move close to the same common Fermi
level µ, with an almost common (normal state) Fermi velocity, and possess an additional, small
contribution to their lifetime due to the presence of the interface; both the magnetization and the
superconductiong gap vanishes over a penetration length Λf across the interface, as determined
above. It is easy to see that for a perfect contact Λf is comparable with Λc.

5 Andreev Re�ection

We focus �rst on the superconducting equations (16) and (17), where we drop out the label n
for the Fermi velocity v, and the superconducting gap ∆α is assumed constant and positive; in

17It is worth noting that such "perfect" contacts appears in fact at the separation between each of the two solids
and their common, extended contact (the "third solid"), as described above.

18P. L. Kapitza, ZhETF 11 1 (1941).
19It is also worth noting that the frequency ∆(1/τ) gives the number of transitions per unit time for a supercon-

ducting pair from one superconductor into another in Josephson junctions, i.e. i~∂ψ1,2/∂t = ~∆(1/τ)ψ2,1, where
ψ1,2 are the condensate wavefunctions.

20See, for instance, R. J. Schrie�er, Theory of Superconductivity, Benjamin, NY (1964).
21At the interface between a conductor and a semiconductor (of narrow band) an extended contact is built up

(except for a limited growth or deposition).
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addition we introduce the one-particle amplitudes

ϕα = 〈0 |ψα| 1α〉 , χα =
〈
0
∣∣ψ+

−α

∣∣ 1α
〉
, (35)

where |1α〉 is an excited one-particle state; the amplitude ϕα is the wavefunction of a k, α-quasi-
particle, while χα represents a −k,−α-quasi-hole in a superconducting pair; indeed, for instance,

ϕα = 〈0 |ψα| 1α〉 =
1√
V

∑
eik′r

〈
0
∣∣ck′α′c

+
kα

∣∣ 0
〉

=
1√
V
eikr , (36)

which is the wavefunction of a quasi-particle, and similarly for χα for the superconducting state;
the connection of the amplitudes above with the canonical transform (20) is obvious; equation
(16) and its mate read now

i~∂ϕα/∂t = (−~vkF − i~v∂/∂r)ϕα + i∆αχα ,

−i~∂χα/∂t = (−~vkF − i~v∂/∂r)χα + i∆αϕα ,
(37)

and it is easy to check up the continuity equation

∂(|ϕα|2 + |χα|2)/∂t+ v∂(|ϕα|2 − |χα|2)/∂r = 0 (38)

for each spin orientation α; however, ∆−α = −∆α and, similarly, χ−α = −χα according to its
de�nition, so that equations (37) are the same for each spin orientation and we may drop out the
label α for the superconducting gap and amplitudes. Equations (37) are Gorkov's equations;22

they tell that a quasi-particle in a superconductor acquires two distinct states, one as a quasi-
particle, another as a quasi-hole in a superconducting pair; according to (38), the localization
probability |ϕ|2 + |χ|2 of a quasi-particle in the superconducting state changes in time according
to the divergence of the current j = v(|ϕ|2 − |χ|2). The current j consists of two contributions,
v |ϕ|2 which �ows along the velocity, and −v |χ|2 which �ows in the opposite direction; this latter
contribution is the Andreev re�ection;23 though it comes from holes, and, at �rst sight it may
appear as enhancing the net �ow, one can see that, on the contrary, it is precisely the opposite
case, it diminishes the net �ow, because the amplitudes of both quasi-particles and quasi-holes
are less than unity, and the quasi-holes move in the same direction as the quasi-particles; actually,
one can see, by making use of (20), that ϕ ∼ u2

k and χ ∼ iukvk, and the localization probability
goes like u2

k, hence the quasi-particles truly encounter a potential barrier on their attempt of
entering a superconductor, and, consequently, they are re�ected by the superconductor gap, as
well as transmitted through;24since the superconducting gap is very small in comparison with the
Fermi energy, at su�ciently low temperatures the quasi-particle lifetime is long enough to allow
for the Andreev re�ection. It is worth emphasizing that a −k,−α-quasi-hole is equivalent to a
k, α-quasi-particle propagating backwards in time, hence the counter-�ow associated with χα and
the Andreev re�ection. Equations (37) also read

~(ω + vkF + iv∂/∂r)ϕ = i∆χ ,

~(ω − vkF − iv∂/∂r)χ = −i∆ϕ ,
(39)

22L. P. Gorkov, loc cit.
23A. F. Andreev, ZhETF 46 1823 (1964) (Sov. Phys.-JETP 19 1228 (1964)).
24A thin conductor-superconductor-conductor sandwich in the ballistic regime would exhibit interference patterns

or pulse-like transport of the �ow, near the edge of the gap (irrespectively of above or below), over a characteristic
transmission time (see, for instance, M. Apostol, loc cit (c)).
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for ϕ, χ ∼ e−iωt; in addition, we remove the vkF -term in (39) by introducing

ξ = e−ikFrϕ , η = e−ikFrχ , (40)

so that (39) become
~(ω + iv∂/∂r)ξ = i∆η ,

~(ω − iv∂/∂r)η = −i∆ξ ;
(41)

for ξ, η ∼ eikr one can check up the superconducting spectrum

~ω = ±
√

∆2 + ~2(vk)2 , while the reduced wavefunctions are given by

ξ = Cα√
2

√
1 + vk/ωeikr ,

η = −iCα√
2

√
1− vk/ωeikr ,

(42)

where Cα is a constant, ~vk = ±
√

(~ω)2 −∆2and ~ω > ∆ (otherwise the quasi-particle does
not propagate, and the wavefunctions decay exponentially with the distance); ξ is the (reduced)
wavefunction of a quasi-particle of momentum ~k, while η represents a quasi-hole of momentum
−~k and spin −α, i.e. a "re�ected" quasi-hole or a re�ected "quasi-particle". It is worth noting
that the "re�ected" quasi-holes (or quasi-particles) change the whole wavevector k, not only one
component; this shows that the Andreev re�ection is not on the interface, but on the supercon-
ductor as a whole. The wavevectors k in (42) are small in comparison with the Fermi wavevector
kF (where the velocity v is calculated), so that the wavefunctions ξ, η vary slowly in space. The
constant Cα bears temporarily a spin label, for the sake of generality, though a spin imbalance de-
stroys usually the superconductivity. Before passing to the ferromagnet-superconductor junction
we note that the transmitted (tunneling) current in the superconductor is

jtα = v(|ξ|2 − |η|2) = |Cα|2 v(vk/ω) ; (43)

in addition, we also note that (42) are consistent with (20), as expected.

We may pass now to the Andreev re�ection in a ferromagnet-superconductor junction; according
to the discussion in the preceding section the Fermi energy in ferromagnet is taken as being
equal to the Fermi energy in superconductor, as for a perfect contact, and Kapitza's resistance is
neglected; under these circumstances equations (37) hold for the ferromagnet by simply droping
out the superconducting-gap contribution; obviously, the remaining part depends on the spin
orientation, through both the Fermi velocity and Fermi wavevector; in addition, χ vanishes for
the non-superconducting sample, (indeed, η → 0 in (42) for ∆ → 0, as expected), so that we may
write down (39) and (41) as

[ω + v1,2(kF1,2 − kF ) + iv1,2∂/∂r]ξ1,2 = 0 , (44)

where the velocities v1,2 = v(1±m)1/3 and the Fermi wavevectors kF1,2 = (1±m)1/3 correspond
to spin up and down, respectively, as de�ned in (7) and (5), m being the reduced magnetization.
In addition, we may note that the term v1,2(kF1,2 − kF ) = ±(1/3)vkFm∼ ∆m is small according
to the discussion in section 2, i.e. it is comparable to ∆ with respect to the Fermi energy;
consequently it is immaterial in (44); it follows that the corresponding equations (39) and (41) for
the ferromagnet reduce to

(ω + iv1,2∂/∂r]ξ1,2 = 0 , (45)
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whose solution is
ξ1,2 = A1,2e

ik1,2r , (46)

for
v1,2k1,2 = v(1±m)1/3k1,2 = ω ; (47)

one can notice in (47) that for m close to unity the wavevector k2 must acquire large values
(the minimum value of ω is ∆/~), which raises problems (a similar situation would have been
encountered in fact if the term v1,2(kF1,2 − kF ) would have been large in (44)); actually, several
restrictions are put on the quasi-particles wavevectors by the requirement that the excitation
energy be ~ω (restrictions arising from the geometric orientation with respect to the velocity v,
for instance, in this respect), but the essential one is the wavevectors k be small in comparison
with the Fermi wavevector kF ; in this respect the ferromagnet equation (45) looks more as the
asymptotic form of the superconductor equations (41), so that the Andreev re�ection proceeds
in the same manner in the opposite direction, i.e. from the superconductor to the ferromagnet,
in particular; in this connection, it is worth noting that the mutual positions of the two samples
need not be speci�ed, the Andreev re�ection proceeding in fact on the asymptotic superconducting
boundaries. Therefore, we must keep in mind that only the �rst-order spatial derivative has been
kept in Schrodinger's equation, as corresponding to the linearized spectrum of the quasi-particles,
and, while slowly-varying wavefunctions ensure, to this accuracy, the continuity of their �rst-
order derivative, on the contrary, wavefunctions varying rapidly in space do not do that anymore;
this is why, the Andreev re�ection must be viewed with caution for magnetization values close
to unity, where large quasi-particles wavevectors are implied; the lifetime of the quasi-particles is
largely diminished in this case at the ferromagnet-superconductor boundary, and the corresponding
transmission coe�cient is diminished; as a consequence, �uxes may not �ow anymore through the
junction, giving rise to superheating, for instance, which may damage the junction and change
the problem. However, this is true for spin-down quasi-particle �uid only, whose density of states
diminishes correspondingly for m ∼ 1, so that its contribution to the transmission coe�cient is
not signi�cant in this region. One may estimate the occurrence of this anomalous situation from
~vkF (1−m)1/3(k/kF ) ∼ ∆, which leads to m/(1−m)1/3 ≤ ∆m/∆.

The continuity condition of the wavefunctions ξ given by (42) and (46) leads to

A1,2 =
C1,2√

2

√
1 + vk/ω , (48)

for a boundary placed arbitrarily at x = 0 (it is worth noting that the components perpendicular
to v of the small wavevectors k are not a�ected by equations); on the other hand, the incoming
current is given by

ji = v1 |A1|2 + v2 |A2|2 = v[(1 +m)1/3 |A1|2 + (1−m)1/3 |A2|2] ; (49)

making use of (43) we may de�ne the transmission coe�cient

w = (jt1 + jt2)/ji = |C1|2+|C2|2

(1+m)1/3|A1|2+(1−m)1/3|A2|2
(vk/ω) =

= 2(|A1|2+|A2|2)

(1+m)1/3|A1|2+(1−m)1/3|A2|2
vk/ω

1+vk/ω
;

(50)

the asymptotic spin amplitudes in the superconductor are equal, i.e. |A1|2 = |A2|2 (and |C1|2 =
|C2|2), so we obtain

w =
4

(1 +m)1/3 + (1−m)1/3

vk/ω

1 + vk/ω
, (51)
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or
w =

2

(1 +m)1/3 + (1−m)1/3
w0 , (52)

where

w0 = 2
vk/ω

1 + vk/ω
(53)

is the transmission coe�cient for zero magnetization; within the present approximation

w0 ' 2
√

2
√

~ω/∆− 1 . (54)

One can see that the transmission coe�cient in the Andreev re�ection increases slowly with
increasing magnetization,

w = (1 +m2/9)w0 (55)

for small values of m. For higher magnetization the Andreev re�ection may be suppressed for
the spin-down quasi-particle �uid. It is also worth noting that the increase in the transmission
coe�cient with increasing magnetization is due to this slow, spin-down quasi-particles ((1−m)1/3-
component in (52)), which go through mainly by di�raction; their performance is limited for higher
magnetization, as discusssed above; the faster, spin-up quasi-particles ((1 + m)1/3-component in
(52)) are in fact scattered by colliding the potential barrier, thus contributing in the opposite,
decreasing, direction to the transmission coe�cient.

6 Electric Resistance of the Junction

For a voltage drop U

−∂n
∂ε
e2U

2 · dp
(2π~)3

(56)

charge is transported per unit volume by a quasi-particle, where n denotes the Fermi distribution;
during the quasi-particles lifetime τ the charge �ux (charge per unit area) is

−∂n
∂ε
e2Uvxτ

2 · dp
(2π~)3

, (57)

while the total �ow (charge per unit area and unit time) is

j = − 2e2

(2π~)3

∫
dp · ∂n

∂ε
v2

xτ(∂U/∂x) ; (58)

from j = σE, where E = −∂U/∂x is the electric �eld, we obtain the electric conductivity

σ =
e2

3π2~
k2

Fvτ . (59)

In the derivation given above the statistical equilibrium is assumed, as well a mean-free path much
shorter than the length of the sample, a low, uniform electric �eld, and a lifetime free of �nite-size
contributions or other geometric e�ects. 25 It is easy to see that for a mean-free path Λ = vτ
comparable with the sample length equation (58) leads to an electric current

I =
e2

3π2~
k2

FA · U , (60)

25For details see M. Apostol, loc cit (b).
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through area A, whence the quanta e2/h of electric conductance can be inferred. Actually, in
such a ballistic regime of transport the lifetime τ does not appear anymore in (57), and the angle
integration gives 1/2 instead of 2/3 in (58); we obtain therefore

j =
e2k2

F

4π2~
U , (61)

i.e. an electric resistance

R =
4π2~
e2k2

F

(62)

for unit area. It is worth noting that in a ballistic transport regime the resistance may depend on
the voltage drop, in some cases; indeed, for a normal conductor we have obviously ~vδkF = −eU ,
and the current j = (−ek2

F/2π
2)

∫
du(vδkF ) = (e2k2

F/4π
2~)U , hence the ballistic resistance (62)

again; for a superconductor the current is reduced by vk/ω, according to (43), where ~ω =
−eU ; one obtains R−1

s = R−1
√
e2U2 −∆2/eU , which is the typical behaviour for the tunneling

resistance in superconductors;26 one may also note that though equilibrium may su�er in a ballistic
transport regime, the quasi-particle lifetime diminishes for higher voltages. The presence of the
eU/

√
e2U2 −∆2-factor in the superconducting resistance is very important, because the ballistic

resistances are extremely low; indeed, typical values for R given by (62) are R ' 10−25Ωm2,
so the voltage U has to be very close to the superconducting gap in order to get a practicable
device; it is worth noting that such a reduction factor in the conductivity comes from the Andreev
re�ection in the superconductor, which shows again that the superconductor behaves like a genuine
potential barrier; since it may be di�cult to �nely tune the voltage precisely just above the
superconducting gap, a convenient reduction in the conductivity may also be achieved by an
additional tunneling barrier interposed between ferromagnet and superconductor; we note that
such a barrier does not change anything essentially in the Andreev re�ection as derived before, it
just act like an additional resistance at the junction; in particular, the transmission of the quasi-
particles through a potential barrier is instantaneous, preserving their energy and velocity.27 Such
potential barriers are usually made of an oxide layer grown up at the interface, within a limited
depth; oxide layers can perform extended contacts, but a limited growth produces thin layers
with sharp separation interfaces; indeed, the atom tunneling through such a potential barrier is
extremely slow, so that the characteristic contact length Λc is irrelevant, the ferromagnet-oxide-
superconductor separation being much sharper this time. Unfortunately, the ballistic transport in
superconductor is a non-equilibrium transport, so the quasi-particle spin-�ip in the superconductor
is less likely in this case; consequently, the associated magnetic mean-�eld of spin polarization may
destroy the superconductivity, and spoil thereby the consistency of the envisaged device; this is
why it still looks preferably to have a di�usive transport in the superconducting sample. We also
note that precisely for the same reason a reciprocal situation, where the magnetization would be
destroyed by the superconducting correlations of the quasi-particles penetrating the ferromagnetic
sample would not take place, so the ballistic transport is possible in the feromagnet.

Turning now back to (59) one can see that the electric conductivity of a ferromagnet does not
depend essentially on magnetization; indeed, the dependence on the magnetization comes through
the velocity v and Fermi wavevector kF in (59), which gives (1/2)(v1k

2
F1 + v2k

2
F2) = (1/2)vk2

F (1 +
m + 1 − m) = vk2

F ; a slow magnetization dependence may be included in the lifetime, but its
contribution is uncertain. This point is supported by the fact that �ows are proportional to

26See, for instance, I. Giaever, loc cit., as well as L. Esaki, Revs. Mod. Phys. 46 237 (1974), and references
therein; a supercurrent may also appear through the tunneling barrier between two superconductors for zero voltage,
as it is well-known (B. Josephson, Revs. Mod. Phys. 46 251 (1974)).

27See, for instance, M. Apostol, loc cit (c).
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density of states ∼ k2
F/v multiplied by velocity v multiplied by mean-free path vτ in the di�usive

regime, hence their ∼ k3
F proportionality to density, and the independence of magnetization.

The electric conductivity corresponding to the tunneling current in a superconductor can be de-
rived in a similar way; however, the �ow involves now the quantal probability beside the statistical
one, i.e. it is given by

j = − 2e2

(2π~)3

∫
dp · n

T
v2

xτ [|ϕ|
2 − |χ|2](∂U/∂x) , (63)

where the temperature is so small in comparison with the superconducting gap that we may use
n = e−~ω/T , ~ω > ∆, for the Fermi distribution; the wavefunctions ϕ and χ are those given by
(40) and (42) for |Cα|2 = 1; one can see that

|ϕ|2 − |χ|2 = vk/ω '
√

2
√

(~ω −∆)/∆ (64)

is much lesser than unity (which corresponds to a normal conductor), as due to the Andreev
re�ection. Making use of (63) and (64) one can compute the tunneling electric conductivity of a
superconductor as

σs = e2

3π2~

√
2k2

F vτ

T

∫ ∞
∆
dξ ·

√
ξ−∆
∆
e−ξ/T =

= e2

3π2~k
2
Fvτ

√
πT/2∆e−∆/T ;

(65)

the lifetime is not a�ected too much in the supeconducting state, in comparison to the lifetime in
the normal state, at least for an e�ective electron-phonon collision regime; consequently, one may
write

σs = σ
√
πT/2∆e−∆/T (66)

for the tunneling conductivity of the superconducting state, where σ is the electric conductivity
of the normal state. One can note in (66) a drastic reduction in the electric conductivity, in
comparison with the normal state, as a consequence of the Andreev re�ection. In addition, from

j = σU−U0

lf
,

j = σs
U0

ls
,

(67)

for a feromagnet-superconductor junction, where lf,s denote the lengths of the ferromagnet and
superconducting samples, respectively, one obtains the electric resistance of the junction

Rj = lf/σ + ls/σs = R +Rs (68)

for unit area, whence one can see that it is independent of magnetization; U0 denotes the volt-
age drop at the junction. However, the superconducting resistance Rs = ls/σs is very high in
comparison with the normal resistance R = lf,s/σ. In particular

Rs = ls/σs = R
√

2∆/πTe∆/T (69)

is the additional, large electric resistance due to the Andreev re�ection in the superconductor,
similar to the one computed originally for a thermal �ow.28 Indeed, the thermal conductivity due
to electron quasi-particles can be computed in a similar way as before, replacing the charge −e
with the energy ε or ~ω; above a certain temperature, but still much below the superconducting

28A. F. Andreev, loc cit.



16 J. Theor. Phys.

gap, the electron quasi-particles bring the main contribution to heat transport. It is also worth
noting in (67) that the voltage drop is continuous at the junction, but its space derivative, i.e.
the electric �eld, is not.

We turn now the attention to a ferromagnet-superconductor junction where the ferromagnet is
in the ballistic or quasi-ballistic regime. We assume that the superconducting sample is in the
di�usive regime, i.e.

j =
1

R

√
πT/2∆e−∆/TU0 , (70)

where R = 3π2~ls/e2k2
F Λ as given by (65); very likely, the Andreev reduction factor in (70) and

the di�usive factor ls/Λ in R increase su�ciently the superconducting sample resistance, such as
to make the device practicable. Let us assume that the temperature is su�ciently low and the
ferromagnetic sample is su�ciently thin that the length lf be much shorter than the mean-free
path Λ = vτ in the normal state of the feromagnet, lf < Λ; increasing the magnetization the
spin-up electron �uid increases its mean-free path Λ1 = Λ(1 +m)1/3, so that it transports in the
ballistic regime; therefore, we may write down

j1 =
e2k2

F1

8π2~
(U − U0) =

e2k2
F

8π2~
(1 +m)2/3(U − U0) , (71)

according to the discussion above; the spin-down electron �uid decreases its mean-free path Λ2 =
Λ(1 −m)1/3 on increasing magnetization; up to a threshold magnetization mt = 1 − (lf/Λ)3it is
still in the ballistic regime, so that

j2 =
e2k2

F2

8π2~
(U − U0) =

e2k2
F

8π2~
(1−m)2/3(U − U0) ; (72)

it follows

j = j1 + j2 =
e2k2

F

8π2~
[(1 +m)2/3 + (1−m)2/3](U − U0) , (73)

which means a resistance

Rf = R
2

(1 +m)2/3 + (1−m)2/3
, m < mt , (74)

where R = 4π2~/e2k2
F as given above; for m > mt the man-free path Λ2 gets shorter than the

length lf of the sample and the spin-down �uid �ows in the di�usive regime; in this case

j2 = e2

6π2~k
2
F2v2τ

U−U0

lf
=

e2k2
F

6π2~
vτ
lf

(1−m)(U − U0) =

=
e2k2

F

6π2~
Λ
lf

(1−m)(U − U0) = 2
3

1
R

1−m
(1−mt)1/3 (U − U0) ;

(75)

it follows the resistance

Rf = R
2

(1 +m)2/3 + 4
3

1−m
(1−mt)1/3

, m > mt (76)

for the ferromagnetic sample; the two resistances given by (74) and (76) are discontinuous at the
threshold magnetization m = mt, as a consequence of the distinct numerical factors in the ballistic
and di�usive conductivities; this negative jump in the resistance is in fact round-o� (by geometric
e�ects, for instance), and it may be viewed as a negative resistance for magnetization values close
to magnetization threshold; apart from this jump the resistance Rf exhibits a monotonous increase
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with magnetization over the entire range 0 < m < 1; in addition, as discussed in the previous
section, the Andreev re�ection may greatly be diminished for values of the magnetization m close
to unity for the spin-down quasi-particle �uid (in the sense that the corresponding electric �ow may
drastically be reduced), but its contribution to the conductivity is small for m ∼ 1. We note two
limiting behaviours for Rf , namely Rf ∼ R(1+m2/9) for m ∼ 0 (which is similar to the behaviour
of the transmission coe�cient w as given by (55)), and Rf ∼ 21/3R{1 + 1

3
[ 24/3

(1−mt)1/3 − 1](m − 1)}
for m ∼ 1. We note also that the resistance of the junction is Rj = Rf + Rs, and it depends
on magnetization through Rf ; increasing the magnetization the electric �ow through the junction
may be diminished, as one can see from (74) and (76), or, it may be increased in the region of
the jump, just as for a transistor; this is the FIST e�ect; one can notice that the controlling e�ect
comes entirely from the ferromagnetic sample, whose magnetization acts like a "gate voltage"
for the transistor; in principle, the e�ect holds for a ferromagnetic-normal conductor junction
too, only the Andreev reduction factor being absent now, the length of the normal sample must
be large, which is not convenient; the Andreev re�ection in the superconducting sample reduces
the electric �ow very much, in comparison with a normal conductor, so that it may e�ectively
be controlled by the magnetization of the ferromagnetic sample. It is also worth noting that
magnetization may be changed by varying the temperature of the ferromagnetic sample, and one
may worry about changing on this occasion the lifetime τ too, which was assumed constant above;
however, the change in the lifetime is much smaller than the change in the magnetization, or the
change in the superconducting gap, for temperatures close to the magnetic critical temperature
Tm, but much lower than the superconducting critical temperature Tc. For mean-free paths longer
than the width of the sample, one may worry about �uctuations that are inherent to such a quasi-
two-dimensional ensemble; however, the �uctuations time for a quasi-particle goes like ~µ1/2/T 3/2,
and one can see that it is much shorter than the lifetime ∼ ~µ/T 2 and the equilibrium time ~/T ,
which means that �uctuations, both quantal and statistical, do not impede upon the ballistic
transport.29

For Λ < lf < 21/3Λ there exists another threshold mt = (lf/Λ)3 − 1 below which both spin-up
and spin-down �uids �ow di�usively, while for m > mt the spin-up �uid �ows ballistically; the
ferromagnetic resistance is then given by

Rf =
3

4
R(1 +mt)

1/3 , m < mt (77)

in the former case, and

Rf =
3

4
R(1 +mt)

1/3 2

1−m+ 3
4
(1 +mt)1/3(1 +m)2/3

, m > mt (78)

in the latter, where R is the same as above; for small values of the magnetization the resistance
is constant (and close to the value R corresponding to lf < Λ), while for higher values of magne-
tization it increases up to the same value 21/3R as above; at the threshold it has a positive jump,
in contrast to the case lf < Λ, where the jump is negative. The reduced ferromagnetic resistance
is shown in Fig.1 for the two cases.

7 Concluding Remarks

The physical conditions of the FIST e�ect require certain limitations, connected especially with
the matching conditions of the Andreev re�ection at the ferromagnet-superconductor junction.

29See, for instance, M. Apostol, loc cit (b).
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Figure 1: Reduced resistance of a ferromagnetic sample vs magnetization in the ballistic (solid line)
and quasi-ballistic (dotted line) regime for two arbitrary values of the threshold magnetization mt.
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We summarize here brie�y the main physical picture of the e�ect. Suppose two distinct solids
in contact, sharing an interface. If the two solids are very dissimilar they di�use largely into
one another, and an extended contact is built up at the interface. Such a contact acts like a
"third solid" in-between the former two, with its own properties. Along such an extended contact
the physical properties vary slowly, and the FIST e�ect would be possible in principle, with a
limited e�ciency however, especially due to the limitations such an extended contact would put
on the ballistic regime of transport in the ferromagnetic sample. New junctions may be de�ned
between each of the two original solids and the third one, which exhibit perfect contacts; hence,
the essential role played by perfect contacts in FIST junctions. Indeed, if the two solids are similar
they di�use into each other over a rather limited scale length Λc, which contributes to the quasi-
particle lifetime. Such a contribution corresponds in fact to the slight di�erence in the Fermi
energies, which brings an uncertainty in the quasi-particles energy, leading to a small Kapitza's
resistance. Otherwise, the Fermi energies may be taken the same in the two solids. In particular,
typical products like vk2

F which enter transport coe�cients in the di�usive regime aqcuire similar
values, as do the quasi-particle lifetimes. Both the ferromagnetic and superconducting gap do not
change appreciably this picture. In particular, the quasi-particle lifetime is similar with the one
in normal state, as the residual interactions are e�ective for the ground-states of such condensed
phases, while preserving the same e�ect for the elementary excitations as in the normal state. In
the di�usive regime the transport through a ferromagnet-superconductor junction is not a�ected
by spin polarization. On the contrary, it depends on magnetization in the ballistic regime of
transport, through the conductivity of the ferromagnetic sample. However, the conductivities in
the ballistic regime are high, so that, in order to be controllable, the transport needs a higher
resistance in this regime. This is provided by the Andreev re�ection in the superconductor in the
di�usive regime. A ballistic transport regime for the superconducting sample may prove to be
inconsistent. The ballistic regime is favoured by a perfect contact and low temperatures, such as
the quasi-particle mean-free path Λ be longer than, or comparable with the length of the sample,
and, of course much longer than the characteristic contact length Λc. The change in magnetization
may be performed by slight changes in temperature just below the magnetic critical temperature,
but much lower than the superconducting critical temperature. Under this circumstance the
change in Λ is small, and may be neglected. The spin �ip and superconducting-pair decay take
place over a scale length Λf which is comparable with Λc, so that one may still have a sharp
ferromagnetic-superconductor junction in the ballistic regime for the ferromagnetic sample. In
addition, for high values of the magnetization (m → 1) the spin-down �uid of quasi-particles
in the ferromagnet ceases to ful�ll the matching conditions, leading thus to a high decrease in
the corresponding lifetime; however, the two spin �uids of quasi-particle act like two conductors
coupled in parallel, and the spin-up contribution dominates the junction resistance.

8 A critique of Some Previous Investigations

Blonder and Tinkham[1] studied the electric �ow through a conductor-superconductor junction
(Cu-Nb) based on their own theoretical model.[2] These studies do not go further than classical
tunneling experiments of Giaever's epoch. The so-called Sharvin resistance[3] of a micro-bridge is
nothing but Casimir's resistance in a disguised form.

Deutscher and Feinberg[4] make a fantastic discussion about a conductor (ferromagnet)-superconductor-
conductor (ferromagnet) device, that bears no relevance whatsoever on real things. This fantasy
gets wrong the Andreev re�ection, the ferromagnetism, the superconductivity, etc. The work
seems to be based on previous, equally enigmatic and obscure, work by Soulen et al.[5], which
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claims to measure the magnetization by using a feromagnet-superconductor junction.

In a recent paper Merill and Si[6] discuss the "spin injection into s- and d-wave superconductors";
however, such a thing does not exist to a large extent; in addition, these authors make confusions
about supercurrents, single-particle currents, Andreev re�ection, etc.

An interesting phase-coherent transport in a superconductor-conductor-superconductor meso-
scopic structure has recently been analyzed,[7] which, however, brings not very much in addition
to Josephson-type interferometers.

A much more rigurous experiment is reported by Worledge and Geballe.[8] They claim to having
deposited 50Å of Al on 20Å of SrTiO3 (STO) on 1000Å of La0.67Sr0.33MnO3 (LSMO) on 300Å of
YBa2Cu3O7 (YBaCu) on a STO substrate. Al is either normal or superconducting, STO acts like
a tunneling barrier, LSMO seems to be highly spin-polarized while YBaCu is superconducting.
Very likely everything is in the ballistic regime, and spin-polarized injection currents destroy soon
the superconductivity. The experiment measures typically the di�erential conductivity, which
consists of ∼ (d/dU)

√
e2U2 −∆2 +f(m), where the function f(m) may be the ferromagnetic con-

ductivity as given in one of the preceding sections; at zero voltage a certain supercurrent may also
appear between the two superconductors; measuring this di�erential curent-voltage characteristics
one may infer the value of m; the "de-superconductivization" of the superconducting sample, as
performed by orbital depairing, Zeeman spliting-up of the pairs and spin-orbit interaction,[9] is a
particular feature of the di�erential characteristic which deserves special attention, but it is not
worth investigating.

A related work puts forward recently[10] a superconducting transistor made of a stack of three
superconducting �lms, the intermediate one being itself a double layer; by applying a magnetic
�eld the inner superconductor swings into a normal conductor, leading to an increase of current.

Jedema et al[11] have analyzed recently a ferromagnet-superconductor "contact spin resistance"
with serious confusions about Andreev re�ection and other things, and, consequently, inconsistent
results.

A series of periodical peaks at the superconductor-conductor-superconductor junction for a Josephson-
like tunneling transport has recently been suggested, as associated with Andreev re�ection.[12]

Spin-polarized currents seem to be created in quantum wells by polarized light.[13]

Spin-polarized current-voltage characteristics are claimed to have recently been calculated for
a ferromagnet-superconductor junction;[14] however, the results of this author do not go much
beyond the classical j ∼

√
e2U2 −∆2 with variations as those coming from additional tunneling

barriers.

A ferromagnet-superconductor-ferromagnet transistor for spin-polarized currents was originally
proposed by Johnson[15], by varying the superconducting gap with a magnetic �eld.

Spin-polarized currents that �ip at the interface, injected from a ferromagnet (Ni-Fe permalloy)
into a normal (paramagnetic) conductor (Al), have originally been demonstrated by Johnson and
Silsbee.[16]

9 Some Additional Notes

It seems that the notion of "transferring a superconducting pair into a normal conductor, or
ferromagnet" is present with some authors in spintronics, in order to investigate spin correlations;
however, unless an extended contact is present, in which case the transfer is continuously smooth
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from a pair to quasi-particles, a pair can only be transferred by giving it at least 2∆, which means
one ∆ at least per each quasi-particle, which amounts to Andreev re�ection for quasi-particles
with an excitation energy ~ω > ∆. Pairs can only be transferred between two superconductors,
within the coherence length at the junction, in which case we have the well-known Josephson
interference.

Orbital depairing, Zeeman spliting up of the pairs and spin-orbit scattering are thought probably
to contribute essentially to destroying the superconductivity by a spin-polarized injected current.
However, this is not quite true. First, the lifetime brought about by such interactions is comparable
with, if not longer than the usual eletron-electron and electron-phonon interactions; in addition, in
the di�usive regime of transport the spin polarization is �ipped out shortly after pasing through the
junction, by the di�erences in the Fermi energies (which are larger than the lifetime interactions),
for equilibrium;30 in the ballistic regime the spin-polarized current gives rise to a high magnetic
�eld, which destroys the superconductivity above certain, relatively low, values of the current. In
addition, if it brings the superconducting sample in the intermediate state, then superconducting
vortices occur and the normal regions act like pinholes for the transport.

It is perhaps worthwhile estimating in this connection the magnetic �eld induced by a spin-
polarized current. It is easy to see that the electric �ow may be written as j ∼ e(k2

F/~)(eU)(Λ/l)
with usual notations, or j ∼ env(eU/~vkF )(Λ/l); one may also take µ for ~vkF , though we know
that usually the latter may be pretty larger than the former; it follows that n′ ∼ n(eU/~vkF )(Λ/l)
electrons are transported by the �ow per unit volume.31 They have a magnetization M = n′µBm
per unit volume, if the current is spin-polarized, so that, fromMH = H2/8π, it follows a magnetic
�eld H ∼ n′µBm. Now, µB

∼= 9 · 10−21erg/Gs, and we may estimate a magnetic �eld H ∼
103(eU/~vkF )(Λ/l)m Gs; in the ballistic regime such a �eld may be high enough to reach the
critical value for superconductivity.

Indeed, there are ∆n ∼ k2
F ∆kF ∼ k2

F ∆/~v ∼ n(∆/~vkF ) pairs per unit volume, whose energy
∆n · ∆ is comparable with the critical magnetic energy H2

c /8π; hence a typical value Hc ∼
102 − 103Gs for the critical �eld.32

Let np = ∆n = n(∆/~vkF ); a longitudinal displacement �eld u produces a change δnp = −npdivu
in the pair density; their energy Ep = np∆ = (~vkF/n)n2

p per unit volume changes by δEp =
(~vkF/n)n2

p)(divu)2; together with the kinetic energy n ·m(∂u/∂t)2 per unit volume one obtains
the sound waves ω = sk propagating in the pair �uid with velocity s = ∆/

√
~vkFm = ∆/~kF ;33

hence supercurrents lower than enps = env(∆/~vkF )2.

Furthermore, it is also worth recalling here a few basic questions related to superconductivity.
First, as it is well-known, the superconducting gap is an uncertainty in the Fermi energy, as regards
the formation or destruction of the superconductivity, so that ∆ ∼ ~v/ξ, where ξ ∼ a(~vkF/∆) is
the coherence length of the superconducting pairs (and the pair density ∆n ∼ 1/a2ξ). It is over
this coherence length where the superconducting pairs are continuously created and destroyed in
a superconductor; this process su�ers a proximity e�ect at the interface of a superconductor with
a normal conductor, or a ferromagnet, where it competes with the stronger uncertainty arising
from the di�erence in the Fermi energies; this is why the destruction of the superconducting pairs

30The exchange interaction is always present.
31It is worth noting that the charge en′ is transported per unit volume under the voltage drop Uv/l per unit

time, which makes an energy en′vU/l = jU/l = jE per unit volume and unit time, as expected, where E is the
electric �eld.

32Similarly, the Curie �eld (mean-�eld) of a ferromagnet can be estimated from ∆m ∼ µBH, hence typical values
H ∼ 105Gs, which are much higher than characteristic magnetic �elds in a superconductor.

33They are the superconducting phasons.
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proceeds over the characteristic length Λf , which is typically much shorter than the coherence
length. On the other hand, at the interface between two superconductors, it is precisely such
coherence lengths over which the pairs are delocalized, making possible the �ow of the Josephson's
currents. A similar discussion holds also for the ferromagnet, and the spin-�ip length Λf of the
spins at the interface between a ferromagnet and a normal conductor, or superconductor.

Secondly, let us assume that the sample has a �nite thickness d, so that the energy spectrum is
~2k2

‖/2m + ~2n2/2md2, where k‖ is the in-plane wavevector and n denotes here the transversal
quantal number; it is easy to see that the Fermi energy is µ ∼ ε0n

2
c , where ε0 = ~2/2md2 is the

transversal localization energy and the cuto� nc ∼ d/a (for nc � 1); the superconductivity tries to
acquire a two-dimensional character, as corresponding to the n-branches of the spectrum, which
makes it unstable against �uctuations; in order to preserve its three-dimensional character the
condition ∆ε ∼ ε0n� ∆ should be satis�ed for n as large as nc; it follows d� a(µ/∆), which is
a characteristic length comparable with the coherence length.

Actually, for such thin samples the superconductivity is only partially destroyed, because the
above condition ∆ε ∼ ε0n � ∆ is satis�ed up to ns ∼ ∆/ε0; the number of states a�ected by
superconductivity can easily be computed from Ns ∼ A

∑ns

n k2
‖ ∼ (A/a2)(∆/ε0), where A is the

area of the sample; one obtains cylindrical superconducting domains of a radius comparable with
the coherence length, covering the area A′ = A(∆/ε0) ∼ A(d2/aξ) � A, where ξ ∼ a(µ/∆) has
been used for the coherence length; it is easy to see that their number is Nd ∼ (d2/aξ3)A =
(ad2/ξ3)Ne, where Ne is the number of electrons per unit area.
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